TD: Ensembles non dénombrables

Olivier Raynaud (raynaud@isima.fr)

 $FIGURE\ 1-Les\ ensembles\ infinis\ {}_{\rm Image\ extraite\ de\ :\ www.lespritsorcier.org}$

Propriété 1. Soient A et B des ensembles infinis,

- 1. Si |A| = |B| alors il existe une bijection $A \to B$;
- 2. Si |A| < |B| alors il existe une injection $A \to B$, mais pas de surjection $A \to B$;
- 3. $Si |A| \le |B| \ alors |A| < |B| \ ou |A| = |B|$.

Théorème 1 (Cantor-Bernstein-Schroëder).

Si A et B sont deux ensembles infinis, et qu'il existe une injection de A dans B et une injection de B dans A, alors il existe une bijection de A sur B.

Question 1. Montrer le théorème 1.

Exercice Propriétés

Question 1. Soient A et B des ensembles infinis, montrer que \mathbf{si} $A \subseteq B$ et qu'il existe une injection $g: B \to A$, $\mathbf{alors} |A| = |B|$.

Question 2. Soient A et B des ensembles infinis, montrer que Si A n'est pas dénombrable et $A \subseteq B$, alors B n'est pas dénombrable.

Question 3. Soient A et B des ensembles infinis, montrer que Si A n'est pas dénombrable et $g: A \to B$ est injective, **alors** B n'est pas dénombrable;

Exercice Comparaison de cardinalité

Question 1. Montrer que l'ensemble \mathbb{R} n'est pas dénombrable.

Question 2. Montrer que les intervalles [0,1) et (0,1) de \mathbb{R} ont même cardinalité.

Question 3. Montrer que les ensembles \mathbb{R} et $\mathcal{P}(\mathbb{N})$ ont même cardinalité.

Question 4. Montrer que \mathbb{R}^2 et \mathbb{R} ont même cardinalité.

Question 5. Soit \mathcal{F} l'ensemble de toutes les fonctions $\mathbb{N} \to \{0,1\}$, montrer que \mathbb{R} et \mathcal{F} ont même cardinalité.

Question 6. Soit \mathcal{G} l'ensemble de toutes les fonctions $\mathbb{N} \to \mathbb{N}$, montrer que \mathcal{G} n'est pas dénombrable.

Question 7. Soit \mathcal{H} l'ensemble de toutes les fonctions $\mathbb{R} \to \{0,1\}$, montrer que $|\mathbb{R}| < |\mathcal{H}|$.

Exercice Combinatoire et décidabilité

Question 1. Soit A un alphabet, montrer que tout problème de décision sur A^* réalise une partition de A^* . En déduire qu'il existe une bijection entre l'ensemble des problèmes de décision sur A^* et l'ensemble des langages sur A.

Question 2. Déduire de la question précédente que la plupart des problèmes sont indécidables.